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ACCURATE UPWIND METHODS FOR THE EULER EQUATIONS

Hung T. Huynh
NASA Lewis Research Center
Cleveland, Ohio 44135, USA

Abstract. A new class of piecewise linear methods for the numerical solution of
the one-dimensional Euler equations of gas dynamics is presented. These methods are
uniformly second-order accurate, and can be considered as extensions of Godunov’s
scheme. With an appropriate definition of monotonicity preservation for the case of
linear convection, it can be shown that they preserve monotonicity. Similar to Van
Leer’s MUSCL scheme, they consist of two key steps: a reconstruction step followed by
an upwind step. For the reconstruction step, a monotonicity constraint that preserves
uniform second-order accuracy is introduced. Computational efficiency is enhanced by
devising a criterion that detects the ‘smooth’ part of the data where the constraint is
redundant. The concept and coding of the constraint are simplified by the use of the
median function. A slope-steepening technique, which has no effect at smooth regions
and can resolve a contact discontinuity in four cells, is described. As for the upwind
step, existing and new methods are applied in a manner slightly different from those
in the literature. These methods are derived by approximating the Euler equations via
linearization and diagonalization. At a ‘smooth’ interface, Harten, Lax, and Van Leer’s
one-intermediate-state model is employed. A modification for this model that can
resolve contact discontinuities is presented. Near a discontinuity, either this modified
model or a more accurate one, namely, Roe’s flux-difference splitting, is used. The
current presentation of Roe’s method, via the conceptually simple flux-vector splitting,
not only establishes a connection between the two splittings, but also leads to an
admissibility correction with no conditional statement, and an efficient approximation
to Osher’s approximate Riemann solver. These reconstruction and upwind steps result
in schemes that are uniformly second-order accurate and economical at smooth regions,

and yield high resolution at discontinuities.



1. Introduction. Among methods for the numerical solution of conservation laws
in general, and the Euler equations in particular, upwind schemes are very popular due
to their accurate shock-capturing capability. Review articles by the pioneers of these
methods are readily available (Harten, Lax, and Van Leer 1983, Roe 1986, 1989). Sev-
eral formulations of upwind schemes, which generally extend that of Godunov (1959),
exist [see also Boris and Book (1973)]. Here, we essentially employ the projection-
evolution approach advocated by Van Leer (1979, 1985). In this approach, an upwind
scheme consists of two key steps: a reconstruction (projection) step where, within each
cell, the data are approximated by polynomials; and an upwind (evolution or approxi-
mate Riemann solver) step where the average fluxes at each interface are evaluated by
a procedure that takes into account the ‘wind’ (or ‘wave’) directions. The Godunov
scheme employs the simplest reconstruction—the piecewise constant function—and
the most accurate upwind procedure—the exact solution of the Riemann problem. Al-
though this method is only first-order accurate and computationally costly, it is the
basis of most modern upwind schemes. A great deal of effort has been spent to enhance
-accuracy by using higher-order polynomials in the reconstruction step, and to improve
efficiency by approximating the solution of the Riemann problem in the upwind step.

First, we discuss the reconstruction step. For simplicity, we consider only linear
reconstructions here. Accurate interpolations (linear and higher order) are derived by
assuming that the data are smooth. If the data have a discontinuity, these interpo-
lations always create oscillations in the solutions. To prevent such oscillations, Van
Leer (1974, 1977, 1979) introduced a monotonicity constraint for his MUSCL scheme:
the reconstruction must preserve the monotonicity of the data. At a smooth region
with nonzero slope, the constraint is redundant provided the mesh is fine enough, and
the MUSCL scheme is second-order accurate. At a discontinuity, the constraint takes
effect to prevent oscillations. A major drawback of the constraint is that it also takes
effect adjacent to an extremum and causes accuracy to degenerate to first order. In
other words, high resolution at discontinuities is obtained at the expense of accuracy
near extrema. The popular total variation diminishing (TVD) schemes (Harten 1983,
Sweby 1984, Roe 1985) share the same advantages as well as disadvantages since they

satisfy Van Leer’s monotonicity constraint.



Harten and Osher (1987) solved the loss of accuracy problem by introducing the
nonoscillatory piecewise linear reconstruction, which involves no constraint. Their
UNO scheme is uniformly second-order accurate and does not create oscillations, but
it is diffusive, e.g., it smears contact discontinuities. The reason for this smearing effect
is that, roughly speaking, the slope of the UNO reconstruction is closest to zero among
all the slopes that are second-order accurate (O(h?)); therefore, its error is one of the
largest in this class (Huynh 1993). Modifications of the UNO and ENO (Harten et
al. 1987) schemes to improve the resolution at contact discontinuities can be found
in Harten (1989), Yang (1990), and Mao (1991). These modifications, however, are
somewhat complicated. For more developments of these schemes, see Shu and Osher
(1989), Rogerson and Meiburg (1990), and Shu (1990). For a technique that senses an
extremum and turns off the constraint there, see Leonard and Niknafs (1991).

In Huynh (1989, 1993), the author presented a geometric framework in which Van
Leer’s constraint can be combined with Harten and Osher’s nonoscillatory interpola-
tion. For scalar conservation laws, the resulting SONIC schemes are uniformly second-
order accurate and nonoscillatory. In addition, each TVD scheme corresponds to a
SONIC counterpart, and the UNO scheme is the most diffusive member of the SONIC
class.

In this paper, the author’s approach is extended to the system of Euler equations.
Similar to the UNO scheme, we employ a five-point stencil for the reconstruction.
While the UNO slope is ‘closest’ to zero, we start with the most accurate one for this
stencil: the slope of the quartic through these five points. Next, since monotonicity
constraints are derived for the convection equation, and characteristic variables are
the quantities that are being convected, the constraints are applied to these variables.
Our constraint consists of two limits (bounds): the lower one, which assures uniform
second-order accuracy, is defined by a slope similar to that of the UNO scheme; the
upper one, which controls oscillations, is derived by making use of the upper limit
for the MUSCL scheme. The constraint requires the final slope to lie between these
two limits. This requirement is conveniently enforced by using the median function:
the final slope is the median of the quartic slope and the above two limits. As such,
the algorithm is costlier than that of the UNO scheme. To save computing time, we

present a simple criterion that detects the ‘smooth’ part of the data: if a cell is in the



‘snooth’ region, then the monotonicity constraint has no effect, and the slope reduces
to the quartic formula for the primitive variables. . With this criterion, the characteristic
variables and the constraints are necessary only for about six to eight cells around each
discontinuity. The resulting algorithm for the reconstruction step is therefore accurate
and efficient; however, it still smears a contact discontinuity, although to a lesser extent
than the MUSCL or UNO schemes. To improve the resolution in this situation, we
present a simple slope-steepening technique that has no effect at the smooth part of
the data and generally can resolve a contact discontinuity in four cells or less.

Once the slopes (space partial derivatives) are defined, the time partial derivatives
can be calculated by the non-conservation form of the Euler equations (Harten et
al. 1987, Roe 1989). At each interface, we can march half a time step via Taylor series
expansions, but the two adjacent cells yield two sets of results (states); we need to derive
one set of fluxes from these two states. This is accomplished by one of the upwind
procedures discussed below. Note that this half-step calculation is a simplification
of an observation by Hancock (Van Albada, Van Leer, and Roberts 1982). It helps
simplify our algorithm at the ‘smooth’ part of the data (below); in addition, it makes
the treatment of source terms straightforward.

While the reconstruction step is mainly numerics, the upwind step is where physics
plays its role. There are several upwind procedures in the literature (Roe 1981, Steger
and Warming 1981, Osher and Solomon 1982, Van Leer 1982, Harten, Lax, and Van
Leer 1983, Roe and Pyke 1984, Roe 1986, Einfeldt 1988, Toro 1991, Liou and Steffen
1993). The most popular method is perhaps that of Roe, but the perfect one is yet
to be found (Roe 1989, Roberts 1990). Upwind procedures are generally perceived
as difficult to formulate and implement. In this paper, existing and new methods
employed are derived from a simple and unified point of view: the Euler equations
in conservation form are approximated by linearization and diagonalization. For the
flux-vector splitting introduced below, what is crucial is that the fixed state for the
linearization is chosen so that the resulting fluxes depend continuously on the data,
and the left and right flux vectors are diagonalized by the same matrices, i.e., those
formed by the eigenvectors of the fixed state.

Since our reconstruction step already distinguishes between the ‘smooth’ and ‘non-

smooth’ parts, a different upwind flux can be applied to each part. At a ‘smooth’



interface, the left and right states are close to each other, and a simple model is suffi-
cient; in fact, a sophisticated one does not significantly improve the results. Here, we
make use of Harten, Lax, and Van Leer’s one-intermediate-state model, which obtains
the flux via a scalar calculation. Combining with the quartic formula, at a smooth
region, the computing effort is therefore only slightly more than that of a central-
difference scheme with artificial viscosity (Jameson, Schmidt, and Turkel 1981). Using
information from the reconstruction step, we also present a modification for the one-
intermediate-state model that can resolve contact discontinuities. Near a discontinuity,
either this modified model or a more accurate one, namely, Roe’s flux-difference split-
ting (1981), is employed. Our presentation of Roe’s method as a flux-vector splitting
(Steger and Warming 1981) has the advantage of conceptual simplicity. It also estab-
lishes a connection between the two splittings. This connection, in turn, facilitates the
derivation of an admissibility (or entropy) correction with no conditional statement
for the flux-difference splitting. In addition, it leads to an efficient approximation to
Osher’s approximate Riemann solver (Osher and Solomon 1982), which is named the
simple-wave upwind flux.

At smooth regions—and generally, most of the flow field is smooth—the scheme
is accurate and economical due to the quartic formula and the one-intermediate-state
model. Near a discontinuity, the monotonicity constraint takes effect to prevent oscil-
lations without causing a loss of accuracy. Moreover, the upwind step for this case,
via either Roe’s lux-difference splitting with admissibility condition or the simple-wave
upwind flux, yields high resolution at shocks as well as contact discontinuities, and non-
physical solutions are also excluded. The resulting schemes are efficient and, as will be
shown by numerical experiments, their accuracy compares favorably with higher-order
schemes.

This paper is essentially self-contained and is organized as follows. In 82, we review
the various forms of the Euler equations and the corresponding characteristic variables.
The discretization and the half time step is carried out in §3. The two main sections
4 and 5 are independent of each other: §4 deals with the reconstruction step; §5, the
upwind step. The algorithm is extended to the case of flows with area variations in
$6. Numerical experiments are shown in §7. Finally, the discussion and conclusions

are presented in §8.



2. Forms of the Euler equations of gas dynamics. The Euler equations are
derived from the physical principles of conservation of mass, momentum, and energy.
In this form, called the conservation form, the equations are valid whether the flow is
smooth or has discontinuities. To assure correct shock speed (Lax 1954), therefore, we
solve the equations in conservation form. The problem thus reduces to a flux estimate
at each interface. To calculate this flux, we make use of the systems of equations in non-
conservation form for both the primitive and conservative variables. The characteristic
variables associated with each of these two systems also play an essential role: upwind
algorithms are generally derived for a scalar convection equation; for systems, the
quantities that are being convected are the characteristic variables. We review the
various forms of the Euler equations in this section [see also Hirsch (1990)]. Different
approaches that make use of these forms can be found in Roe and Pyke (1984), Roe
(1986, 1989), and Toro (1991).

2.1. Conservation form. The one-dimensional flow of an inviscid and compress-

ible gas obeys the conservation laws for mass, momentum, and energy:

oU  OF(U)
5 + Franke 0, (2.1a)
p m
U=|m|, F=| (m%p)+p|, (2.1d,¢)
€ (e+p)m/p

where t is time, = distance, p density, m momentum, e total energy per unit volume,
and p pressure. Let v be the ratio of specific heats, then for a perfect gas, the system

is completed by the equation of state

p=(y—Dle~m?/(2p)]. (2.2a)
Denote by u the velocity, then m = pu, and the above yields

1
e = ;i—l Epuz. (2.2b)

The flux vector is more commonly written as

pu
F=| pu+p |; (2.2¢)

(e +pju
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the above expression is also convenient for the purpose of coding.

2.2. Primitive variables. With superscript T representing the transpose, let V

be the column vector of primitive variables,
V = (p,u,p)". (2-30)

At smooth regions of U, one can derive from (2.1-2) that

av av
57 tArg, =0 (2.3b)
where
u p O
A, =10 u 1/p]. (2.3¢)
0 vp u

Equation (2.3b) for the primitive variables is of non-conservation (or non-divergent)

form. Let ¢ be the speed of sound,

p
c=,/—. 2.4
. (2.4)
Then the eigenvalues of A, are
A =y — ¢, A =y, A =y e (2.5)

One can easily verify that the columns of the following matrix are the right eigenvectors

corresponding to the above eigenvalues,

1 1 1
R, = (—c/p 0 c/p) . ‘ (2.6a)
¢ 0 &

Now set
L,= R;l; (2.6b)

then

L,=|1 o0 -1/¢
0 p/(2c) 1/(2¢%)
and the rows of L, are the left eigenvectors of A,. It follows from the definitions of R,

and L, that

(0 —p/(2¢) 1/(2¢%) )
, (2.6¢)

L,AR,=A, A,=R,AL, (2.7a,b)



where

AN 00
A= 0 A® o |. (2.7¢)
0 0 @

Note that we do not need the subscript p for A because, as shown below, this matrix is
identical to that of the conservative variables. Also observe that the matrices L, and
R, are functions of p and c only (or p and p); they do not depend on wu.

Next we define the characteristic variables associated with V. Let V = (p, 4, p)T
be a fixed state. Let AP, I:,,, ﬁ.,,, and A be the corresponding matrices given by (2.3¢c),
(2.6c,a), and (2.7c). By linearizing (2.3b) at Vv,

v . 9V
AT

0. (2.8a)
Since A is a constant matrix, the above equation is linear; it is an approximation to
the nonlinear equation (2.3b) in a neighborhood of V provided that the solution V is
smooth. By (2.7b),

A, =R AL,
In addition, because L, is a constant matrix, and it is the inverse of R, equation (2.8a)

is equivalent to

oL,V N Aai,,,v

=0. 2.8b
ot oz 0 (2.89)

We can now define the characteristic variables. Set
W, = L,V; (2.9a)

then it follows from (2.6¢) that

—[p/(28)]u + [1/(28%)]p
W, = p—[1/&p ; (2.99)
[/(28)]w + [1/(2¢%)] p
and (2.8b) takes the form :
82’” + Aa;’:” =0. (2.9¢)

Because A is a diagonal matrix, the above system is decoupled, and each component
corresponds to a convection equation of speed 4 — ¢, %, and 4 + ¢, respectively. For

this reason, the components of W, are called characteristic variables. Note that all
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components of W, have units of density; as a result, a comparison among them makes
sense. The second component corresponding to the speed @ is called the linear char-
acteristic; the other two are the nonlinear ones. The above characteristic variables are

simpler than those defined from the conservative variables below.

2.3. Conservative variables. At smooth regions of U, equation (2.1) can be

written in non-conservation form via the chain rule:

ouU ou
N ras =0 (2.10a)

where A, is the Jacobian matrix,

A,

OF (OF OF 8F>‘ (2.108)

T80~ \8p’om’ de

A straightforward calculation using (2.2a) yields

0 1 0
A, = ( (v — 3)u?/2 3—v)u v — 1) . (2.10¢)
(y— L —que/p —=3(y—1)u’/2+ve/p u

To diagonalize A., we make use of the transformation from the primitive variables
to the conservative ones (Warming, Beam, and Hyett 1975). This transformation will
also play a key role in the relations between the flux-vector and flux-difference splittings
later. Denote the Jacobian matrix of this transformation by M:
oU _ (90U 0V 9U
gV \8p  0u’ dp )
Then it follows from the definitions of U and V and (2.2b) that

1 0 0
M= ( u P 0 ) . (2.11b)
W2 pu 1/(y—1)

M= (2.11a)

As a result,

1 0 0
M= —u/p 1/p 0 |. (2.11¢)
(v=1w?/2 —(v—1u ~v-1
Next, we relate A and A, by using M. Apply the chain rule to (2.10a),
ov v

M—+AM—

= 5o =0. (2.12)



As a consequence of the above and (2.3b),
A,=MTAM. (2.13)

This fact can also be verified by carrying out the right hand side matrix multiplications
using (2.10c) and (2.11b,c); the result is identical to (2.3c). Substitute (2.13) into
(2.7a),

(L,,M‘I)AC(MRP) = A. (2.14a)
Now set
L.= LpM'l, R. = MR,. (2.14b, ¢)
Then
LAR.=A; (2.15)

the matrices L. and R. are the inverse of each other; the columns of R, are the right
eigenvectors of A, and the rows of L., the left. Expressions (2.14c), (2.11b), and (2.6a)

yield -
1 1 1
R.=| u-c u utce |, (2.16)
H—uc u?/2 H+uc
where H is the total enthalpy,

e+p u? vp u? c?
H = =— 4 = — 4 — 2.17
p 2 (vy=1lp 2 ~-1 (217)

Similarly, from (2.14b), (2.11c), and (2.6¢),

M/2+(y=1)M?*/4  [-1—(v=1)M]/(2c) (y—1)/(2¢)
L=| l-(-1M/2 (v—1)M/c —(v=1y/¢ (2.18)
M2+ (DM [L-( - DM)/(20)  (v=D)/2H) ) T

where the Mach number M is defined by
M=ufc (2.19)

Later, we will make use of the fact that L. and R. depend only on any two of the three
variables u, H, and M; they do not depend on p. In fact, the matrix A. can also be
written in a form that only depends on u and H: by (2.17),

p=pH—¢; . (2.20)
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substituting the above into (2.2b),

e y—1,
= U 2 2.21
p H+ 5 u®; (2.21)
as a result,
0 1 0
A, = (v — 3)u?/2 (3—")u y—11. (2.22)

(y=1Du¥/2—uH —(y—1w*+H ~u
The derivation and definition of the characteristic variables associated with U are
similar to those for V in (2.9): with L. defined by (2.18) at a fixed state U, set

W, =L.U; (2.23a)
then it follows from (2.10a) and (2.15) that
IW, . IW,
AL =0. .23b
ST AT =0 (2.23b)

By (2.6¢), I:p is sparse; by (2.18) L. is dense. Consequently, W, is employed whenever
possible, and W, is used only when necessary.

Before moving to the next section, we make the following remark. At smooth regions
of the solution, the three forms (2.1), (2.3), and (2.10) are equivalent; at a discontinuity,
however, only the conservation form (2.1) is valid. In each cell, therefore, since the
solution is assumed to be smooth, we can employ (2.3), i.e., the primitive variables,
for the purpose of reconstruction because it is the simplest of the three. Of course the
conservative variables (2.10) can be used for this step at the cost of extra computing
time. The results for these two reconstructions are essentially identical for the second-
order methods presented below. (Note that for higher-order methods, the advantage of
employing (2.3) over (2.10) is no longer clear because deriving accurate averages for the
primitive variables is more involved.) At an interface, however, there is a discontinuity;

consequently, we employ (2.1) to obtain the flux.

3. Discretization. Let z; = jh, j = 0,1,2,... be a uniform mesh, z;11/2 =
(7 + 1/2)h be the boundary between the jth and 7 +1 cells, and t® = n7 be the time
level; here, h is the mesh size, and 7, the time step. Let U} be an approximation to
the average value of the solution vector U in the j-th cell at time ¢",

Ut L [ (e, 1) da, (3.1)

i~y
h 1'_7‘_1/2
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where the integration acts on each component of U. Assume that we know U?, for all

j; we want to calculate U7+, where the time step 7 satisfies the CFL condition
T
[max(|uj| + Cj)] 5 <1 (3.2)
]

In this and the next two sections, we only consider the interior points; boundary
conditions employed in this paper are standard and will be addressed as needed.

To derive second-order methods, we use the midpoint rule:

" n n4+1/2 _ pn+l/2
Uj+1T_ U’ N Fii - | Uy ~0, (3.30)

or equivalently,
U = U7 + (E350 - B3R (3.38)
For simplicity of notation, we omit the superscript n when there is no confusion; e.g.,
U, denotes U?; the superscripts n + 1/2 and n + 1, however, are retained.
The problem, therefore, reduces to estimating {F?Ill //3 } from the data {U;} (the
braces represent all j). To obtain these fluxes, we first calculate the primitive variables
{V;} in a straightforward manner by their definitions. Next, in each jth cell, and for

t" < t <"1, we approximate V(z,t) by a linear function R;(z,t):
Rj(z,t) = V; + (z — z;)8; + (t — t") T}, (3.4)

where S; and T; respectively approximate V.(z;,t") and V(z;,t"). Suppose, for the
moment, S; is known. We march to time ¢t*+!/2 as follows. Since V; is also known, T;

can be estimated by using the equations for the primitive variables (2.3):
T; = —(A;); S;- (3.5)

At time ¢t"*1/2 and at the two interfaces of the jth cell,

h
Rj(a:j_l/g, tn+1/2) = Vj - §Sj + -;-Tj, (3.60‘,)
n+1/2 h T
R;(Zj41/2,t"7"%) = Vi + 58 + 5T, (3.60)

At each interface j + 1/2, we now have two values for the primitive variables: one from

the Taylor series expansion in the jth cell, namely, R;(zj41/2,t"*'/?); and one from
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that in the j +1 cell, Rjy1(zj11/2,t"+/?). From these two values, we will calculate the
flux F;‘Ill ;22 via one of the upwind procedures that employ the conservation form (2.1).
It is only here that the ‘wind’ (or ‘wave’) directions come into play.

As a result of the above arguments, the problem reduces to a slope estimate and
an upwind procedure for the flux. We remark that these two steps are independent of
each other. '

Note that the calculation of the time partial derivative from the spatial one via (3.5)
was employed in the derivation of the Lax-Wendroff (1964) scheme. In the context of
reconstruction, this procedure for the conservative variables was observed by Hancock
(Van Albada, Van Leer, and Roberts 1982). It can be traced back to the Cauchy-

Kowalewsky theorem (Courant and Hilbert 1962, Harten et al. 1987).

4. Slope estimates. This section deals only with interpolations and constraints;
the ‘wind’ direction does not play any role. When the data are smooth, accurate
formulas for the slope are readily available (parabolic or quartic). Near a discontinuity,
however, such formulas are no longer accurate; in fact, they yield a poor representation
of the data and create oscillations in the solutions. By imposing various constraints on
the slope, a better representation of the data can be obtained; the resulting schemes
are generally also free from oscillations. The constraints should be designed so that
at smooth regions of the data, they have no effect; i.e., they do not alter the original
slope. The monotonicity constraint presented below consists of two limits (bounds): a
lower one, which is ‘closest’ to zero among all slopes that are accurate to O(h?); and an
upper one, which prevents the slope from becoming too steep. The constraint requires

that the final slope lies between these two limits.

4.1. Constraints for the slopes. To be precise, we need a few definitions. Let

z1,...,2 be real numbers, and let
o =min(z1,- .., 2), B = max(zi,...,2k). (4.1)
We define I [z,. .., z] to be the smallest closed interval containing 2y, ..., 2; 1.e.,
I[z1,...,24] = [&, B].

Next, let the median of three numbers be the one that lies between the other two.

Then it follows that the median lies in the interval defined by any two of the three
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arguments; e.g., if z, y, and z are real numbers, then
median (z,y, z) € I [z,y], median (z,y,2) € I [y, z]. (4.2)

It is very convenient to enforce a constraint by using the median function. As an
example, suppose y; and y, are the two limits for a quantity y; i.e., the constraint is
that y lies in the interval I [y;,y2). Then this constraint is satisfied by y; (f for final)
defined by

y = median (y, y1,y2). (4.3)

Note that if y lies between y; and y,, then y; = y, and the constraint does not alter the
original estimate. If y lies outside the interval I [y;, y2], then between the two values
1 and y2, ¥ equals the one that is closer to y.

We now make an observation concerning accuracy: if two of the three arguments
are accurate to a certain order, then the median yields a value that is accurate to the
same order. More precisely, suppose r and y approximate an exact value § to O(k*);

then median(z,y, z) is also accurate to O(hk ) regardless of the value z:
median (z,y, z) = § + O(k). (4.4)

Indeed, since z and y are accurate to O(k*), so is any value between z and y. By (4.2),

median (z,y, z) lies between = and y; as a result, it is accurate to the same order.
With zi,..., 2 being real numbers, let minmod (zy,...,z2) be the function which

returns the smallest argument if all arguments are positive, the largest if they are all

negative, and 0 otherwise. This definition is equivalent to
minmod (z1, . .., 2x) = median (e, 3,0) (4.5a)

where o and 3 are given by (4.1). For the purpose of coding,

minmod (21, ..., z) = smin(}z1], .. ., [2k]) (4.5b)

where
s = jlsgn (21) + sgn (22)] 3lsgn (z1) + sgn (23)] - - - 3lsgn (1) +sgn (z)],  (4:5¢)
and sgn (z) = 1 if z is positive; sgn(z) = —1 if z is negative. In the above formula

for s, the expression within the square brackets yields the appropriate sign. Note that
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there is only one set of square brackets, but there are several sets of absolute value
sign. Clearly, if any two arguments are of opposite sign, then one of them must be of
opposite sign with z;; consequently, s = 0. In general, s equals either —1, 0, or 1. Also
observe that if any argument z; equals 0, then it does not matter whether sgn (2;) is
defined as —1, 0, or 1 in (4.5¢c) since the resulting minmeod, by (4.5b), is 0.

With two arguments z and y, minmod (z,y) is simply the median of z, y, and 0.

In this case, expressions (4.5b,c) reduce to

minmod (z,y) = & [sgn (<) + sgn (v)] min (jz], ). (4.6)
The minmod function is more commonly defined as

sgn (z) min (|}, ly|) if zy >0,

rod ’ ={
minmod (z, y) 0 otherwise

(e.g., Harten 1983, Sweby 1984, Harten and Osher 1987).
For convenience of programming, we express the median function in terms of min-
mod:
median (z,y,2) =z + minmod(y — =,z — )
=y + minmod (z — ¥,z — y) (4.7)
=z + ;[sgn (y — z) +sgn (z — )] min (ly — =, |z — =).

Let the extended-minmod function xm (z,y) be defined by
xm (z,y) = median (z,y, —= — ¥). (4.8a)

(In terms of Sweby’s limiter function (1984), xm (z,y) = z median (1,7, —1 —r) where
r =y/z.) It follows from (4.7) that

xm (z,y) = —(z +y) + 1 [sgn (2 + y) + sgn (2y + z)] min (122 + y|, |2y + z[). (4.8D)

As explained below, the above function is slightly different from the minmod func-
tibn. If z and y are of the same sign, then the two functions return the same value,
namely, the one with smaller modulus. If z and y are of opposite sign, however, the
minmeod function returns 0, while the extended-minmod returns the value with smaller
modulus provided that |z/y| > 2 or |z/y| < 1/2 [see also expression (2.27) in Huynh

(1993)]. Loosely speaking, the extended minmod function returns the argument of
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smaller modulus nearly all the time, and next to a discontinuity, it preserves the slope
of the smooth side more often than the minmod function.

We are now ready for the constraint. Since monotonicity constraints are derived
for the convection equation (Van Leer 1977), and the characteristic variables are the
quantities that are being convected, we interpolate W, the characteristic variables
associated with V defined in (2.9) [see also Roe and Pyke (1984), Roe (1986), Harten
and Osher (1987)]. In the rest of this section, we only deal with W,; as a result, for
simplicity of notation, we drop the subscript p.

Let j be a fixed index. Let V = V; in (2.8); that is, we linearize the equations
for the primitive variables at V;. Since we use a five-point stencil, for —2 <1 < 2,

employing (2.9b), set

—[pi/ (2¢)) ujrt + [1/(2cH)] Pt )
; (4.9)

W, =LV, = ( pivt — 1/ pijwi
[0i/(2¢;)] wirr + [1/(2¢2)] pjiss

again, L is the matrix of left eigenvectors at the state V;. Let w; be any component
of W, say, the first component, for —2 < [ < 2. We obtain the final slope for this

component as follows. Let s, and s_ be slopes of the linear interpolations:
s+ = (wy — wo)/k; 5. = (wo — w_1)/h. (4.10a, b)

Let p_, po, and p; be the slopes at { = 0 of the three quadratics defined respectively

by {w—2a w—13w0}7 {w—lvwo’ 'LU1}, a.nd {'LU(), wlva}:

p- = (w-_2 — 4w_; + 3wo)/(2h), (4.11a)
po = (w1 — w-1)/(2h), (4.118)
P+ = (—w2 + 4wy — 3wo)/(2R). (4.11¢)

Note that the three slopes above are accurate to O(h?). Next, between ! = 0 and | =1,
the slope s; does not oscillate, but it approximates the exact slope at { = 0 only to
O(h). To obtain a slope that is accurate to O(h?) and does not oscillate, we simply
use the median function:

¢+ = median (s4, p+, po), (4.12a)
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and by symmetry,
q_ = median (s_, p_, po)- (4.12b)

For further details, see §3 of Huynh (1993). Between the two slopes above, we take,

roughly speaking, the less steep one,

g = xm (g4, q-)- (4.12¢)

The slope g¢. is clearly accurate to O(h?) because by (4.8a) and (4.2), it lies between
g and g4. It behaves very much like the UNO slope of Harten and Osher (1987): the
resulting scheme is uniformly second-order accurate and does not create oscillations.
Because it is (loosely speaking) closest to zero among all slopes that are accurate to
O(h?), the scheme shares the property of being diffusive with the first-order upwind
method (slope equals zero) but to a much lesser extent. Note that if the extended
minmod function in (4.12c) is replaced by the minmod function, then the result is the
UNO slope. The extended minmod function, however, has the advantage of preserving
the slope of the smooth side more often near a discontinuity. More importantly, while
the UNO slope is the final one, the slope {4.12c) is employed only as one of the two
bounds (the lower limit) for the monotonicity constraint described below.

Next, we define the other bound (upper limit). The following monotonicity con-
straint was presented by Van Leer (1974, 1977): for the cell [ = 0, if the linear re-
construction takes values in I [w_;,wo,w1], then it does not create oscillations in the
solution. This constraint is very simple; however, it causes a loss of accuracy near
extrema. We present a constraint that preserves uniform second-order accuracy below.
The argument to the right of [ = 0 is carried out first. Van Leer’s constraint can be
restated as follows. The reconstruction to the right of I = 0 (z; < = < zj41/2) takes
values in I [wo, w,]; that is, the final slope g5 lies between 0 and 2sy (see Fig. 4.1).
It is the limit 0 that causes accuracy to degenerate near extrema. To obtain uniform
second-order accuracy, we require that the final slope lies between ¢. and 2s,, where
g 1s defined by (4.12c). The requirement to the left of / = 0 is that g lies between g.
and 2s_. The two requirements together result in the following constraint: the final
slope lLies in the intersection of the two intervals I [g., 2s_] and I[q.,2s4]. Clearly, one

end of this intersection interval is g.; the other is

q* = median (g, 25,254 ). (4.13)
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Figure 4.1. Van Leer’s constraint.

Thus the constraint takes the form

g5 € Ig.,q7].

Having obtained the two limits, we now define an accurate slope. Using the quartic

(five-point) formula, set
qs = ('w_2 - 8?.0..1 + 8’!1)1 - wz)/(12h) (414)

The above slope is highly accurate; however, near a discontinuity, it may have the
wrong sign (see Fig. 4.2). We avoid this problem by requiring that gs lies between po
and p,, where

Pm = median (p—)p-i-’pO)' (415(1)

To bring ¢s into the interval I [po, p,»], we once again use the median function:

ge = media,n(qs, Pms>Do)- (4-15b)

Observe that at the smooth part of the data, ¢¢ is generally identical to gs; that
is, pm and po provide plenty of ‘room’ for an accurate slope. Indeed, without loss of
generality, we may assume z; = 0, and the Taylor series expansion of the exact solution
w, takes the form

we(z) = sz + dz? + ez® + O(*)
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Figure 4.2. The quartic slope may have the wrong sign.

[see §3.5 of Huynh (1993)]. Then, by omitting higher-order terms,
p.=s—2eh?, po=s+eh’, py=s— 2eh®.

The interval I [po, pm] is therefore equal to I [s—2eh?, s+¢eh?], which contains the exact
slope s, and the above observation follows. (Also note that instead of the requirement
that g5 lies between po and pm', we can insist that gs lies between ¢_ and ¢4, and thus
save one median calculation. This latter constraint, however, does not provide as much
‘room’ as the former, i.e., it alters ¢s more often.)

Finally, using the median function, we limit gs,
¢s = median (g, ¢, ¢")- (4.16)

Since g, and ge are accurate to O(h?), the above gy is also accurate to the same order
by observation (4.4).

A remark concerning the effect of constraint (4.16) is in order. At the smooth part
of the data where the slope is nonzero, expression (4.16) yields ¢; = ge because ¢. is
closer to 0 than ge, and ¢* is further from 0. Near an extremum, the interval 7 [g., q*]
may reduce to the point {g.}, and in this case, ¢y = g. (see Fig. 4.3(a)). It is here

that our monotonicity constraint preserves second-order accuracy while that of Van
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Figure 4.3. Effects of the new constraint.

Leer may not. Near a discontinuity, or where the data change rapidly, the slope g¢ is
generally steeper than ¢*, and the final slope is identical to ¢*, which is either 2s, or
2s_ (see Fig. 4.3(b)).
Let the final slopes by the algorithm (4.10-16) for the three components of W, be
q}l) , qu), and q}a) . Let
Qs = (¢, ¢, d")7. (4.17)

The slopes of the primitive variables are obtained by
S, = RQ; = R,;Q; (4.18)

where R; is the matrix formed by the right eigenvectors given in (2.6a). This expression

completes the slope estimates.
Note that (4.15) and (4.16) can be replaced by

45 = ¢« + minmod (ge — gu, 25+ — Gx, 25— — qu). (4.19)

We also remark that in the case of linear convection, with an appropriate definition

of monotonicity of the data in an interval (Huynh 1993), it can be shown that the
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slope defined by (4.10-16) yields a scheme that preserves monotonicity and is uniformly

second-order accurate (to appear).

4.2. Smooth regions. The above constraints are constructed so that they have
little or no effect at the smooth part of the data. For such a region, the slope reduces to
the quartic formula for the primitive variables. More precisely, suppose the constraints
(4.15b) and (4.16) have no effect at the jth cell. Then, since g = g5, and multiplication

by a constant commutes with matrix multiplication, it follows from (4.13) that
Qs = [LV,_o — L(8Vj.1) + L(8Vj41) — LV12]/(12R). (4.20)
Because R and L are the inverse of each other, (4.18) and the above yield
' 8; = (V2 — 8Vj1 + 8V — Vjia)/(12h), (4.21)

which is the quartic formula for the primitive variables.

Next, we present a simple criterion which detects the ‘smooth’ regions where the
constraints have no effect, and as shown above, the slope is then given by (4.21). For
a wide class of problems—including all the test problems below—a discontinuity in
the flow field leads to a discontinuity in the density field. As a result, to separate
discontinuities from smooth regions, it suffices to test the demnsity field. (For highly
complex problems, we may need to test more than one field.) Let AZp be the second
difference of p:

Alp = pj-1—2p; + pin1- (4.22)

For each index j, let k; be a flag that is set as follows: if

4 A p 5 4 Alp 5
3 < AJ2.p < 7 and 5 < Ajzp < 7 (4.23a, b)
2 J

then k; = 1, and the flow is considered to be ‘smooth’ in the jth cell; otherwise, kj =0.
(We remark that in the case of linear convection, the factors 4/5 and 5/4 are replaced
by 2/3 and 3/2, and it can be shown that a constraint slightly more general than
(4.16) has no effect on the original slope. This general constraint was employed for
cubic interpolation in §3.4 in (Huynh 1993). The factors 4/5 and 5/4 are chosen by

numerical experiments to account for nonlinearity as well as the fact that only one out
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of three fields are tested. In fact, the more relaxed factors 2/3 and 3/2 are sufficient
for all of our test cases except the interacting-blast-wave problem of Woodward and
Colella (1984).)

For the purpose of coding, observe that the following statement is equivalent to
(4.23a): A2 p lies between (4/5)A2p and (5/4)A2p. That is,

(%A?P - Af'_lp) (%Afp - A?_lp) <0.

Thus, if we set

a; = (3a%0— AL,p) (3020 - AZ,p), (4.24a)
and

b = (3420 — AL,p) (3420 — ALip) (4.24)
then conditions (4.23) are equivalent to max(a;, b;) < 0. In practice, we allow for some
noise in the data because they are quickly damped out by the scheme. Conditions

(4.23) are coded as
max(a;, b;) < ep;. (4.24¢)

where ¢ is a small number, typically, € = 10~> or 10~*. In this paper, all numerical
tests employ € = 5 x 10~°. The corresponding expression for &; is

_ [1 if (4.24c) holds
k; = { ) 42
’ 0 otherwise. (4.25)

Roughly speaking, if k; = 1, then the data are ‘smooth’ at z;, and the slope S; is given
by (4.21). Otherwise, the constraint may take effect, and the estimate for S; is given
by (4.9-18).

Notice that at the ‘smooth’ regions (k; = 1), the quartic formula (4.21) can be
replaced by the parabolic one (similar to (4.11b)), which has a three-point stencil; the

results are generally slightly more diffusive.

4.3. A slope-steepening technique. The above slope estimate results in a
scheme that is effective, uniformly second-order accurate, and does not create oscilla-
tions, but it still slightly smears a contact discontinuity, although to a lesser extent
than the MUSCL or UNO schemes. The reason for this smearing is that near a dis-

continuity, the constraints help prevent oscillations by bringing the slope closer to zero
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when necessary, but they do not steepen the slope to the maximum allowable value,
which keeps the discontinuity from smearing. In the case of a shock, the characteris-
tics converge; the shock remains crisp, and no modification is needed. For a contact
discontinuity, however, the characteristics are parallel; there is no self-steepening mech-
anism, and smearing takes place. To keep contact discontinuities sharp, Colella and
Woodward (1984) presented a criterion to detect them, and in that case, a steeper
reconstruction is employed for their piecewise parabolic method. For other techniques,
see Harten (1989), Yang (1990), and Mao (1991). Our approach is somewhat different:
the slope steepening should take effect near a discontinuity but have no effect at the
smooth part of the data.

The following simple algorithm can generally resolve a contact discontinuity in four
cells or less; it is applied only to the linear characteristic, i.e., the second component
of W,. For this component, with ¢_ and ¢; given by (4.12), g by (4.15b), « a fixed

constant which typically equals 5, we reset gg to

ge — sgn (¢s) max(rlgs — q-1, 1gel)- (4.26)

Then we apply (4.16) to obtain the final slope.

To see the effect of the above expression, observe that at the smooth part of the
data, since both ¢_ and g, approximate the exact slope at | = 0 to O(h?), the quantity
|g+ — ¢-| is a small number of order O(h?). As a result, except for a neighborhood of
length O(h?) around an extremum where the original g is too close to 0, expression
(4.26) does not alter gs. (We need not pay attention to this neighborhood because the
constraint (4.16) will make the final slope gs = g¢..) Loosely speaking, (4.26) has no
effect at the smooth part of the data. Near a discontinuity, on the other hand, ¢- and
g4+ are far apart, and «g4 — ¢_| becomes a large number; consequently, the slope gg by
(4.26) is considerably steeper than the original ge.

For readers who are familiar with limiter functions, the following remark explains
(4.26) from this point of view (see Fig. 4.4). Strictly speaking, the explanation is
incorrect, but it conveys the idea. Consider the case of ¢_ and g, both being positive.

Set k =5, r = q4/g-, then

5lg+ — ¢-| = (5lr — 1])g--
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Figure 4.4. Slope steepening ezplained via limiter function.

The lines g(r) = £5(r — 1) intersect g(r) = (r + 1)/2 at r = 9/11 and r = 11/9. The
lines g(r) = 5(r—1) and g(r) = 2 intersect at r = 7/5; g(r) = —5(r —1) and g(r) = 2r,
at r = 5/7. Roughly, for r between 9/11 and 11/9, expression (4.26) does not alter
the original g, which is represented by g(r) = (r 4+ 1)/2. But for 5/7 < r < 9/11
or 11/9 < r < 7/5, expression (4.26) steepens gs, and the result can be even more
compressive than the ‘Superbee’ limiter function (Roe 1985). Also note that since
both ¢_ and ¢, are accurate to O(h?), at most of the smooth regions, r lies between
9/11 and 11/9, and (4.26) has no effect. Near a discontinuity, it takes effect and
steepens the slope considerably. The final constraint (4.16) then limits the slope to
assure that no oscillations are created (r < 35/7 or r > 7/5).

Certain contact discontinuities, such as those resulting from a shock interacting with
another shock, are extremely difficult to resolve. Even highly compressive methods like
Roe’s ‘Superbee’ scheme may smear them. The above technique can be used to capture
such discontinuities by setting « = 10, or even 20. For such large «, the slope steepening
(4.26) may take effect at the smooth part of the data; consequently, it should be applied
sparingly, for example, only when the strength of the linear characteristic dominates

that of the other two. This condition is quantified below: for the :th component of
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W;, 1<:<3, set
o® = ) — wf] + [uf’ — ¥ (4.27a)

Then the linear characteristic is said to dominate the other two if
@ > 2(cM 4 B, (4.27b)

(The factor 2 is found by numerical experiments; the results generally vary only slightly

if a different factor is chosen.) In this case we also reset k;:
k; = -2 (4.28)

As noted at the end of §2.3, all o) have units of density; consequently, a comparison
among them makes sense.

We summarize the slope estimate below.

Algorithm for the slope. Given the conservative variables {U;}, calculate the prim-
itive variables {V;}, and {A%p} by (4.22). For each index j, compute a; and b; by
(4.24a,b). Next consider the following two cases.

(a) If (4.24c) is satisfied, the cell is in the ‘smooth’ region; set k; = 1; define S; by
the quartic formula (4.21); then move on to the next index.

(b) Otherwise, set k; = 0, and for =2 < I < 2, calculate W; by (4.9). For each
component 7, 1 <7 < 3, obtain o by (4.27a). If (4.27b) holds, i.e., the linear
characteristic is dominant, reset k; = —2. Next, for each ¢, 1 < ¢ < 3, calculate
qff) by (4.10-16); while estimating qgg), however, after obtaining ge via (4.15b),
if kj = —2, reset gs by (4.26) before carrying out (4.16). Having obtained Qy,
calculate S; by (4.18). Then move on to the next index.

Note that instead of (or in addition to) (4.27b), one can employ a more sophisticated
criterion to detect a contact discontinuity without much penalty in computing time (at
least, for scalar computers) because generally, the flow field is mostly ‘smooth’, i.e.,
(4.24c) holds.

For comparison, we next present the slopes of three popular TVD (total variation
diminishing) schemes. With s_ and s; defined by (4.10), instead of (4.11-16) the
minmod scheme (Harten, 1983) is given by

q; = minmod (s_, 54 ); (4.29)
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Van Leer’s average limiter (1977),
qs = minmod [(s- + s4)/2,25_,254]; (4.30)
and the ‘Superbee’ scheme (Roe and Baines 1984, Roe 1985),
g = minmod [sgn (s—) max(|s-|, |s+]), 2s~,2s4]. (4.31)

We remark that if s_ and s, are of opposite sign, the three expressions above return 0

for the slope. Expression (4.30) can also be written as

a7 = Llsgm (s-) + sen (s, min(ls- + s41/2,2ls_], 2ls.:]);

similarly, (4.31) is equivalent to

qs = j[sgn (s-) + sgn (s4)] min [max(|s_|, |s4),2ls_|,2ls+|].

Compared with the TVD schemes, which are only first-order accurate near extrema,
the slope estimate for our scheme has the disadvantage of being more involved in terms
of coding, but it has three distinct advantages: it is both accurate and economical at
smooth regions, and it gives high resolution at contact discontinuities.

The author’s SONIC-A scheme, which is a uniformly second-order extension of Van

Leer’s average limiter, is defined by

qs = median [(q- + ¢4)/2, ¢x, ¢7).

The SONIC-B scheme, which extends ‘Superbee’, is given by

9 = median [Sgn (q*) max(l‘l—l’ |Q+I)v G« qt]'

Due to the use of g_ and ¢4 instead of s_ and s,, the above slopes yield uniformly
second-order accurate schemes. Note that at the ‘smooth’ part of the data, these slopes
do not simplify easily; in contrast, the slope presented in the algorithm summarized

above does.

5. Upwind flux. With the slope {S;} defined in the previous section, one can
calculate the time partial derivative by (3.5) and obtain the interface values at time
t"+1/2 by (3.6a,b). Let j + 1/2 be a fixed interface, and let

Vi =Rj(zi01/2,t™?), Ve =Rju(zinp "7, (5.1)
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where the reconstruction values are given in (3.6). From the above left and right states,
we derive a flux denoted by Fy via one of the upwind procedures below.

In this section, time ¢ is employed only for convenience of derivation; the final flux
Fy is independent of time. Let the conservative variables corresponding to Vr and
Vg be denoted by Uz and Ug. Consider the conservation laws (2.1) with the initial

condition at ¢ = 0:
_ (U ifz<0,
U= {UR otherwise. (5-2)

The above problem is called the Riemann problem. The exact solution, which only
depends on Uy, Ug, and z/t, is known (e.g., Godunov 1959, Van Leer 1979, Holt
1984, Gottlieb and Groth 1988, Hirsch 1990). It is a constant along each ray (half line)
« = Mt where the speed )\ is fixed and ¢t > 0. An approximation Fy for the flux at
z =0 (or A =0) and ¢t > 0, called an upwind flux (or approximate Riemann solver), is
sufficient for the purpose of calculation. In fact, these approximations are sometimes
called alternative Riemann solvers because they can be more diffusive than the exact
solution, and may occasionally produce smoother (more accurate) solutions for (3.3)
as in the case of a slowly moving shock wave (Roe 1989). Notice that the coordinates
have been shifted so that (z;41/2,¢**/2) in (5.1) now corresponds to (z = 0,t = 0).

At an interface in the smooth region, Vi and Vg are generally different, but close
to each other. As a matter of fact, for such an interface, Vg — V is an O(h?) quantity;
consequently, for simplicity and economy, we may derive Fy; via the non-conservation
form (2.3). This method is called the primitive-variable splitting, which can be consid-
ered as a simplification of Toro’s approximate Riemann solver (1991); it is carried out
in §5.1. On the other hand, although V;, and Vg are close, they are generally different;
in that case, there is a discontinuity in the initial condition. Theoretically, therefore,
only the conservation form (2.1) is valid. The simplest model that employs (2.1) is
perhaps the one-intermediate-state model by Harten, Lax, and Van Leer (1983), which
resolves the two acoustic waves, but ignores the contact discontinuity. This model
turns out to be more economical than the primitive-variable splitting; in addition, at
smooth regions, it performs as well as Roe’s flux-difference splitting with roughly a 35
percent savings in (total) computing time.

Near a discontinuity, Vg — V, is O(1), and the flux also has an error O(1). Con-

sequently, we have to take extra care: if the model is inadequate, this error may
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propagate throughout the flow field and cause accuracy to degenerate. For such an in-
terface, we employ a flux-vector splitting derived by linearization and diagonalization.
It will be shown that this flux-vector splitting, which is conceptually simple, yields a
result identical to Roe’s flux-difference splitting, which is computationally simple. Our
derivation also leads to an admissibility correction with no conditional statement and
an economical approximation to Osher’s approximate Riemann solver.

For convenience of notation, with the initial condition (5.2), denote
AU = UR - UL; (53)

similarly, AF = Fgr — Fi, and Apu = prugr — prur, etc. Notice that the operation A

is linear, i.e., for any functions f, g, and constants «, 3,

Alaf + Bg) = aAf + BAg.

5.1. Primitive-variable splitting. Among the subsequent upwind fluxes, this is
the only one that employs the nonconservation form (2.3). It is perhaps the simplest
model where the ‘wind’ directions play their roles. As mentioned above, it should
only be employed at ‘smooth’ interfaces. More precisely, with k; defined by (4.25) and
(4.28), set

kivrz = ki + kv (5.4)

Then this flux is used only when k;;1/2 = 2. For a similar method, which employs
(2.3) with a more sophisticated fixed state for the linearization and a slightly more
complex calculation involving the left and right states of the contact discontinuity, see
Toro (1991).
With the initial condition Vi and Vg, we linearize the Euler equations (2.1) at the
average state
V = L(VL +Vg). (5.5)

Next, equations (2.8a) for the primitive variables are diagonalized as shown in (2.8b).
The characteristic variables corresponding to the initial condition Vi, and Vg are given
by (2.9a),

W, =L,Vy, and W,p=L,Va. (5.6a,b)
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By (2.8b), each component of these variables is advected with speed 2@ . Consequently,
the upwind characteristic variable W, 7 is determined by the ‘wind’ direction or the
sign of AC):

_ ] wpL if;\_>_0, 56
it {wp,R otherwise (5.6¢)

where, for convenience, the superscript (i) is understood. In both cases, the above

expression is equivalent to

[1+sgn (3)] wor + 31 —sgn(})] wyr
[wpr + wp.r) — 2sgn (V) [wp.p — wp L] -

A

Denote by sgn (A) the diagonal matrix whose diagonal entries are sgn (5\(")), i=1,2,
3; then
Wou = H(Wpr + Wpr) — jsgn (A)(Wyn — Wyp).

To obtain the corresponding primitive variable Vy, multiply the above equation on

the left by R,, and by (5.6a,b),
Vy =3(Vi +Vg) - ‘1§R1> sgn (A)L,(AV), (5.7)

where the operation A is defined in (5.3). Finally, the upwind flux is the flux of the
above state.

The following remark is in order. If A = 0, then should we select w,y = wp,z or
w,r = wp g in (5.6¢)? Since the fluxes resulting from these two quantities are generally
not identical, the final upwind flux does not depend continuously on the data. At a
smooth interface, this discrepency is not critical, and the above upwind flux performs
well; near a discontinuity, however, it may create oscillations in the solutions. By using
the conservation form (2.1), one can derive upwind fluxes that depend continuously on

the data; in fact, all of the subsequent methods share this property.

5.2. One-intermediate-state model. This model, introduced by Harten, Lax,
and Van Leer (1983), is independent from all other upwind models presented here.
Instead of using diagonalization, it approximates the solution of the Riemann problem

(5.2) by three constant states: Ur, Ug, and an intermediate state denoted by U;. Our
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presentation below is slightly simpler than the original one. Similar to the primitive-
variable splitting, this flux is employed at ‘smooth’ interfaces. At ‘nonsmooth’ in-
terfaces (k;j41/2 < 2), together with a modification to resolve contact discontinuities
presented below, it can also be used.

Our choice of wave speeds is most economical: with the average state V defined in
(5.5) and ¢ the corresponding speed of sound, let the minimum (subscript [) and the

maximum (subscript r) wave speeds be

a =1t —¢, a, =+ ¢ (5.8a,b)
The corresponding Mach numbers are
M:ié, M1=$=M—l, M,=EA5=M+1. (5.8¢,d,¢e)
¢ ¢é ¢

For a more sophisticated choice of wave speeds, see Einfeldt (1988). Next, the top
half of the (z,t)-plane is divided into three regions separated by the two half lines
z = ait and z = a,t (see Fig. 5.1). For the left region, the solution is assumed to
be the constant state Uy; for the right, Ug; and for the middle region, Uy, which is
determined below. Let 7 > 0 be a fixed (provisionary only) time step. Consider the
control volume whose four corners are (a;7,0), (a;7,7), (a,7,7), (a,7,0). By balancing

the fluxes for (integrating (2.1a) over) this control volume,
7(ar — a;)Ur = 7(¢,Ug — a/UL) — 7(Fr — FL).
As a result,

a,.Up—aqUr, Fgr-—-Fg

ay — @} a, — ay

U=

(5.9)

Note that 7 no longer appears in the above expression.

We are now ready to derive the upwind flux. For the moment, suppose a; < 0 and
a, > 0. By balancing the fluxes for the control volume with corners (a;7,0), (a;7, 1),
(0,7), and (0,0), .
—7aiU; = —ta/Up — 7(Fy — Fr).

As a result,
Fy= FL-I—G.((U[—UL). (5.10(1)
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QT 0 a,.T z
Figure 5.1. The one-intermediate-state model.

Similarly, for the control volume with corners (0,0), (0,7), (a,7,7), and (a,7,0),
Fy=Fp+ a,-(U[ — UR). (5.10b)

Note that the above two Fy are identical by (5.9). Multiply (5.10a) by a., (5.10b) by
—ay, and then add the results,
Fy= —Fn+ FL+

ar — Q Qr — G} ar — 4

a, aa,

(Ur—Uy). (5.10¢)

Thus the flux Fy is a weighted average of the left and right fluxes plus an ‘artificia.
viscosity’ term. Note that the above expression involves only scalar operations and
no matrix multiplications. Next, if a; > 0 then Fy = Fr; similarly if ¢, < 0 then
Fy = Fp. That 1s,

FL if 0 S ai,
Fy={ it Frt 2o Fr+ 225(Ur-Up) ifa<0<ar, (5.11a)
FR if ar < 0.

Observe that if a; = 0, then (5.10c) yields Fy = Fr; similarly, if a, = 0, it implies
Fy = Fgr. As a result, the above expression for Fyy depends continuously on the data.
Using the Mach numbers defined in (5.8¢,d,e),

FL if 0 < M17
Fy = { L(~MFr+ MFr)+ 1MM.4Up—Up) if M <0<M,  (511b)
Fr if M, <0.
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The above expression can be combined into a single formula:
Fy=1[(M,” = M7)Fr+ (M,* — M*)Fp| + iM M, ¢ [Up— U] (5.11c)
where for any real number z, the negative and positive parts of z are
z~ =min(z,0) = 1(z — |z]), z* = max(z,0) = 3(z + |z]). (5.12)
We summarize the algorithm below.

Algorithm for an upwind flux via the one-intermediate-state model. At a
‘smooth’ interface where kjy1/2 = 2, with Vi and Vg given by (5.1), first calculate the
average state V by (5.5); next obtain the Mach numbers M, M, and M, by (5.8¢,d, €);
finally, Fy is given by (5.115) or (5.11¢).

Notice that if the maximum and minimum wave speeds are defined as
ar = —(|g| + &), ar = |u] + ¢, (5.13a)
then (5.11a) reduces to
Fu = }(F1 + Fr) — }(12l + )(Ur - Up), (5.13b)

which is a ‘central difference’ plus an ‘artificial viscosity’ term. This simple formula
is due to Rusanov (1961) [see also Anderson, Thomas, and Van Leer (1985), Yee
(1987), and Davis (1988)]. Generally, it saves about 6 percent of total computing
time compared with (5.11), and it performs well for all of our tests except for the Lax
problem in §7.

The one-intermediate-state model (5.11) is economical and produces good results
at smooth regions. It also handles shocks well; however, it cannot resolve a contact
discontinuity accurately since the model does not contain a contact.

We remedy this problem by the following simple technique. At an interface j +1/2,

the linear characteristic is said to be dominant if
kj+1/2 <0 (5140)

where k;;1/2 is defined by (5.4). In this case, we reset pr to pr if & > 0, and reset pg
to prif 4 < 0:

if M>0, PR — PL; if M< 0, pL« pr- (5.14b, ¢)
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In other words, near a contact discontinuity, density is determined by the flow direction.
Note that velocities and pressures are not altered. The flux Fy is then calculated by
(5.5), (5.8), and (5.11b) or (5.11c).

With the above modification, the model works well for all the standard tests except
the Mach 3 expansion shock in §7; i.e., it may admit non-physical solutions (also known
as solutions that violate the entropy condition). Further modifications can be made
so that non-physical solutions are excluded; e.g., at a ‘nonsmooth’ index j + 1/2, i.e.,

kiy172 < 1, instead of (5.5), ¢; and a, can be defined by
a; = min(ug — eL, 4R — CR), a, = max(ur, + cr,ur + Cr).

Such calculations involve two speeds of sound and take more computing time than
(5.5). We will not elaborate on different definitions for a; and a, any further; instead,
we present below an estimate for Fyy that has two intermediate states, and with an

admissibility condition, it excludes non-physical solutions.

5.3. Flux-vector splitting. The flux-vector splitting developed by Sanders and
Prendergast (1974) and Steger and Warming (1981) is conceptually simple; however,
the resulting scheme smears a contact discontinuity and may become inaccurate at
sonic points [see also Hirsch (1990)]. On the other hand, Roe’s flux-difference splitting
(1981, 1986) is conceptually more involved, but it is highly accurate. The models for
these two splittings are very different: for the former, the interaction between the left
and right sta:tes is accomplished through mixing of pseudo-particles (the Boltzman
approach); for the latter, through finite-amplitude waves (the Riemann approach) [see
Harten, Lax, and Van Leer (1983)].

We present below a flux-vector splitting that turns out to be identical to Roe’s flux-
difference splitting. The advantage of this presentation is its conceptual simplicity. The
method, in fact, is very similar to that of §5.1, but instead of splitting the primitive
variables, we split the fluxes. The two key techniques are, again, linearization and
diagonalization. What is crucial, however, is that the fixed state for the linearization
must be derived carefully in order that the solution depends continuously on the data.
Our derivation of this state, which is Roe’s ‘square root averaging’ state, follows the

remark concerning M. Brio in Roe and Pyke (1984).
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As expressed in (2.10), after a linearization, the Euler equation can be written as

oyu ~ 0U
ot TA 0

here A, = (8F/AU)(U), and U is yet to be determined. With the initial condition
(5.2), let U be a state that satisfies

AF = A,AU (5.15)

where A is defined in (5.3). (As will be shown later, the above condition implies the
upwind flux depends continuously on the data.) Loosely speaking, we wish to find a
solution for the mean value theorem (which says a solution exists in the scalar case).

Using expression (2.22) for A,
Apu 0 1 0 Ap
Alpu®+p) | =1 (v—3)@/2 B—y)a  y-=1]|dpu|. (516)
Ae + p)u (v=1&3/2—-aH —-(y-1)u*+H ~u Ae
The first component of the above vector equation yields Apu = Apu, which is useless;

as a result, the solution of the above system cannot be unique. Next, using expression

(2.2b) for e, the second component can be simplified to
@?Ap — 2aA(pu) + A(pu?) = 0. (5.17)

The two solutions of the above quadratic in @ are

A(pu) £ [{A(pw)}? — ApA(pu?)]*?
Ap '

u =
For simplicity of notation, set

TL = +/PL; TR = +\/PR, (518)

then, by expanding A via (5.3),

rLuL:i:rRuR (5 19)

U=
rptrp

The solution corresponding to the negative sign is meaningless when pr = pg, and is

therefore discarded. The one with the positive sign always makes sense and yields

o UL TRUR (5.20)
T+ TR
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The above expression is Roe’s well-known ‘square root averaging’. For the purpose of

coding and for later use, denote

TL TR
= = 21a,b
BL r. + TR, ﬂR r. + rR, (5 a, )
and
. = \/PLPR- (5.22)
Then
PL
BL = ., Br=1-0, (5.23a, b)
PL + Px
and
% = frur + BRUR; (5.24)

that is, @ is a weighted average of ur, and ug.
Consider now the third component of (5.16). Since % is already determined above,
this component yields the total enthalpy H. Indeed, by definition (2.17) for H,

e+p=pH, (5.25a)
and by (2.2b), . 1
e=—pH+ 7 pu’. (5.25b)
Y 2y

Using the above expressions, (5.17), and the linearity of A, the third component can
be simplified to
A(puH) = —aHAp+ HA(pu) + 2A(pH).

As a consequence,

4 _ AlpuH) — Gd(pH)

A(pu) — @by (5.26)
By expanding A in the above expression and factoring out rzrr(ur —uL),
g reflL+rriR, (5.27)
rL+ TR
that is, with Bz and Br by (5.23a,b),
H= BrHy + BrHR (5.28)

(note the similarity between (5.28) and (5.24)).

35



The argument (5.16-28) yields the following important fact: equation (5.15) is
satisfied with @ by (5.24), H as above, and j arbitrary.
Next, we split the fluxes. As noticed after (2.20), we do not need p for the purpose
of diagonalization because it does not appear in the expressions of A, A, L,and R..
Multiplying (2.1) on the left by L., and since L, is a constant matrix,
oL.U  OL.F
ot + 9z

Let the characteristic variable be W = L. U (for convenience, we omit the subscript ¢

0. (5.29a)

in W), and the characteristic flux, G = L.F. Then, the above is equivalent to
‘ oW 0G

— 4+ ——=0. 5.29b
, ot + oz 0 (5-296)
Corresponding to the initial condition (5.2),
W, =LU;, Wg=L.Upg, (5.30)
and more importantly, _
Gr=LF;, Ggp=LFp (5.31)

Since L. is a constant matrix, (5.30) and (5.31) respectively imply
AW =LAU, AG=LAF. (5.32a, b)

We now make use of the crucial expression (5.15): AF = A, AU. Substitute this into
(5.32b),
AG = LA (R.L.)AU.
By (2.15) and (5.32a),
AG = AAW. (5.32¢)

Let ¢ be the ith component of G, then the upwind characteristic flux Gy at z = 0
for (5.29b) is determined by the sign of A():

w2 i 535
where, once again, the superscript (¢) is omitted. Expression (5.32c) shows that if
X = 0, then g1 = gr, and it does not matter whether the left or the right flux is
selected in (5.33). Finally, the upwind flux is

Fy = R.Gy. (5.34)



In summary, let p. be defined by (5.22); B, Br by (5.23); &, (5.24); H, (5.28); L.,
(2.18); and R., (2.16). Then the upwind flux is given by (5.31), (5.33), and (5.34).
Similar to the derivation of (5.7), the above algorithm can be expressed with no

conditional statement. Indeed, by considering the two cases of (5.33),

gu =13 [1 + sgn (5\)] gL +3 [1 —sgn (5\)] gR- (5.35)
As a result, switching to vector notation,

Gy = Y(GL + Gr) — isen (A)(Gr — Gy).

Denote by |A] the diagonal matrix whose diagonal entries are |A®)|. Then from (5.32c),
and since [sgn (A)]A = |A],

Gy = (G + Gr) — }|A|AW. (5.36)

By (5.32a),
Gu = }(GL + Gr) — } |A|L.AU. (5.37)

Multiplying the above expression on the left by R. and employing definition (5.31),

one obtains

Fy = }(FL + Fgr) — IR |A|L.AU. (5.38)
2 2

Thus, in the flux-vector splitting algorithm summarized after (5.34), expressions (5.31),
(5.33), and (5.34) can be replaced by (5.38). Expression (5.38) is very similar to Roe’s
flux-difference splitting formula; in fact, in the next subsection, we will show that they
are identical.

Note that in (5.31) and (5.33), we split the left and right fluxes to obtain the upwind
flux; in (5.38), however, it is AU, the difference of the conservative variables, that is
split. As shown above, the two splittings are identical provided (5.15) is satisfied. If a
different state is chosen for the linearization, e.g., the average state U defined in (5.5),
the splitting (5.33) no longer yields a result identical to (5.38).

With the tilde state given by (5.15), expression (5.33) yields a flux that depends
continuously on the data. If a different state is chosen for the linearization, the flux via
(5.33) may not depend continuously on the data any longer. In contrast, expression

(5.38) always results in a flux that depends continuously on the data no matter which
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state we pick for the linearization. For this reason, (5.38) is preferred. Conceptually,
however, (5.33) is simpler.

Also note the similarity between the primitive-variable splitting (5.7) and the flux
splitting (5.38). What is crucial, however, is the differences between the two: to the
advantage of the flux splitting, the sign function in (5.7), which is discontinuous, is
replaced by the absolute value function in (5.38), which is continuous; to its disad-
vantage, the matrices in (5.7) associated with the primitive variables are sparse, while
those in (5.38) associated with the fluxes are not.

Observe that the key difference between the flux-vector splitting of (5.33) and that
of Steger and Warming is that in the latter, the left flux is split by the matrix L.z at
the left state, and similarly, the right flux, by the matrix at the right state; whereas
in the current method, both the left and right fluxes are split simultaneously by the
matrix L. at the tilde state.

5.4. Flux-difference splitting. In this subsection, we show that the above
method yields a result identical to Roe’s flux-difference splitting. To prove this, we
first calculate p by employing the Jacobian of the transformation between the primitive

and conservative variables. In addition to (5.15), we require that the tilde state satisfies
AU = MAV, (5.39)

or, with M expressed by (2.11b),

Ap 1 0 0 Ap
(A,m):( i s o )(A) (540)
Ae /2 pu 1/(y-1) Ap

Notice that due to the use of M, our derivation of the tilde state is conceptually simpler
than that of Roe and Pyke (1984), where the eigenvectors are employed to decompose
AF and AU.

The first component of the above vector equation yields Ap = Ap, which is again
useless. The second and third yield, respectively,

A(pu) = 4Ap + pAu, (5.41)
Apu?®) = @*Ap + 2p0Au. (5.42)
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Note that these two equations are identical to (3.9-10) of Roe and Pyke (1984). Cal-
culating 5 from (5.41) and substituting it into (5.42), one obtains

#2Ap — 2aA(pu) + A(pu®) = 0.

Strikingly, this quadratic is identical to (5.17), and the solution for @ is given in (5.20).
Substitute % into (5.41), one obtains

p = \/PLPR. (5.43)

The argument (5.40-43) yields the following important fact: equation (5.39) is
satisfied with j as above, @& by (5.24), and H arbitrary.
As a result of the statement above and that after (5.28), the following crucial

conclusion can be drawn. There exists a state V which satisfies the two equations
AF=AAU and AU=MAV (5.44a, b)

simultaneously, and this state is unique: it is defined by (5.43), (5.24), and (5.28).
We make use of (5.44b) to simplify (5.38). Multiplying (5.44b) on the left by L.
and employing (5.32a) and (2.14b),

~ ~

AW = LAU = L,AV. (5.45)
Substituting this into (5.38), we obtain
Fy = }(Fy + Fr) — 1R |A|L,AV. (5.46)

The above is identical to expression (28) of Roe (1986), which is the flux-difference
splitting formula. To clarify the differences in notation, note that the components of
I:,,AV are denoted by aj by Roe; and the columns of R., by e;. Since the flux-vector
and flux-difference splittings yield identical results, when a distinction between them
is not necessary, they are called the flux-splitting method.

Observe that the advantage of the flux-difference splitting (5.46) over the flux split-
ting (5.38) is that the matrix f,p is sparse while L. is not.

Also note the similarity between the flux-difference splitting and the primitive-

variable splitting (5.7). For comparison, suppose we replace the tilde state in (5.46)
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by the average state (5.5). Then, compared to the primitive-variable splitting, the
flux-difference splitting has the disadvantage of costing slightly more since ﬁ,p is sparse
while R, is not; on the other hand, its advantage is that the resulting flux depends
continuously on the data, and consequently, it is more robust.

We remark that with the tilde state defined by (5.24), (5.28), and (5.43), one can

derive p:

. -1 -
p = Bror + Brpr + 727 B1Bri(Du)?.

From the definition of the tilde state, it is not obvious that p is strictly positive. But
from the above expression, and since by (5.43), S, and Br by (5.23) are all strictly
positive, so 1s p.

As discussed by Roe (1981, 1986, 1989), the flux-splitting method may admit non-
physical solutions. This problem can be corrected by an admissibility condition (Roe
and Pyke 1984) or by adding numerical diffusion (Harten 1983, Harten and Hyman
1985). One can also derive an upwind flux that satisfies the entropy condition a
priori (Engquist and Osher 1981, Osher and Solomon 1982, Osher 1984, Osher and
Chakravarty 1984). For a recent treatment, see Roe (1992). Two types of admissibil-
ity conditions that are somewhat different from the one in Roe and Pyke (1984) are
shown below. Our presentation also establishes a connection among these different
approaches: they all add numerical diffusion by increasing the magnitude of the wave

speeds.

5.5. Admissibility conditions for flux-vector splitting. In this subsection,
we present a conceptually simple admissibility condition that excludes non-physical
solutions. Due to its simplicity, it may easily extend to other systems of equations.

Again, the superscript (z) is understood. Suppose Az and Ar (yet to be determined)
are respectively the speeds associated with the characteristic quantities {wyr,gr} and
{wr,gr} defined in (5.30-31). Then, for the flux-vector splitting, we have effectively
assumed that A, = A = A. In other words, the ith component of equation (5.29b) is
a convection equation with speed X. Since (5.29b) is nonlinear, if we can approximate
Az and Ag more accurately, in addition to the case of a convection, we can have either
that of a shock where A, > A > AR, or a fan where Ap < X < Agr.

In the case of a shock (see Fig. 5.2(a)), expression (5.33) is still appropriate for
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(a) shock (b) fan
Figure 5.2. Characteristic fluzes for a shock and a fan.

the following reasons. The upper half of the (z,t)-plane is divided into two regions by
the shock line z = At, and the characteristic flux is a constant for each region, taking
the value gz, to the left of the shock, and the value gr to the right. Expression (5.33)
determines which of these two values is chosen for gy, the characteristic flux at ¢ =0
(z=At, A =0, and t > 0). '

In the case of a fan (see Fig. 5.2(b)), however, (5.33) may no longer be appropriate
for the following reasons. The upper half of the (z,t)-plane is divided into three regions
in this case: to the left of z = Art, the flux is gz; to the right of z = Agt, it is gg; and
for the region consisting of the rays z = At where Ay < A < Ag, the flux g(A) changes
smoothly from gz, to gr. If the fan does not spread past z =0 (or A = 0), then clearly,
(5.33) is still valid. But if the fan spreads past z =0, (5.33) still yields either g1, or g,
which is a poor approximation for gy and may result in non-physical solutions. This
situation is depicted further in Fig. 5.3, where the characteristic flux g as a function of
the characteristic variable w is plotted.

We estimate A\; and Ag by using the tilde state as a pivot, and approximate the
fan by a (piecewise) linear function below. First, denote the vector of characteristic

variables and fluxes at the tilde state by W and G:

W=1,0=L,M0), G=LF=L,M"F). (5.47)

By carrying out the multiplications in the brackets using (2.11c) and then the multi-
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Figure 5.3. A fan spreading past A = 0 in (w, g)-space.

plication by f,p using (2.6¢), the above expressions yield

( 1/2 ) s ((a—&)/2)
y-11, G==|av-1) |. (5.48a, b)
1/2 T\ (a+9)/2

(We remark that G and Gr defined in (5.31) can be simplified in a similar manner. )

W =

=2 |

Note that G can also be derived by observing that the flux F, as a function of the
conservative variable U, is homogenous of degree one: F = A.U;asaresult, G = AW.
In addition, notice that each component § of the vector G has units of momentum,
while each component @ of W has units of density and is strictly positive. Next, let

the average speeds be

A= 29 Ap= 29 (5.49a, b)

w — W wR — W

We can now estimate Ay and Ap:

A =27 —X  Ar=2Xp— A (5.50a, b)

If X > 0 and A\ < 0, then we have a fan that spreads past £ = 0. By assuming that the

flux g is a linear function of the speed A between (Az,gr) and (X, §), we can estimate
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gu, the flux corresponding to the speed 0:
gu—gr _g—4L
_/\L - A L.
Thus, for this case, we reset gy defined in (5.33) by

S

AgL — ALg
«— .

—_ 5.51
gu — AL ( a)
Similarly, if X < 0and Ag > 0, then
g MRTARD (5.51b)
—-X+ Ar

By considering the limiting case of A\ — 0 and that of Ag — 0, one can easily verify
that gy defined by (5.33) and (5.51a,b) depends continuously on the data.

Notice that we need to carry out the above admissibility correction only for the
nonlinear characteristics; for the linear one, (5.33) is sufficient (more on this in the
next subsection). In fact, if & > 0, then the first component gg ) requires this cor-
rection, but not the third since the left and right speeds corresponding to a nonlinear
characteristic do not spread beyond the contact speed @ (approximately anyway; for
the exact solution, this is always the case). Similarly if & < 0, then the correction is
carried out only for gé? ),

Also note that in general, Ay and Ag given by (5.50) may lie on the same side
relative to A. However, if the left and right states differ only by either the first or the

third characteristic, then, for all practical situations, Az and Ag lie on different sides

relative to \; i.e., we have either a shock or a fan.

5.6. Admissibility conditions for flux-difference splitting. Since the role
of the admissibility condition is to break up the solution when it is not physical, a
simple model may serve the purpose. In this subsection, we make use of the simple
wave model employed by Roe and Pyke (1984) to approximate Az and Ar, and then,
derive an admissibility condition for the flux-difference splitting that involves no con-
ditional statement. Moreover, formula (5.67) below shows that this condition produces
additional ‘numerical viscosity’ when the fan spreads past z = 0, and thus, (5.67)
provides an explanation for the connection between the approach of admissibility con-
dition (Roe and Pyke 1984) and that of numerical diffusion (Harten 1983, Harten and
Hyman 1985).

43



Let V = (p, u,p)T be a fixed state, which plays the role of Vin (2.9). Let V446V =
(p+6p,u+6u, p+6p)T be a nearby state. For each ith component, we will estimate é A6
the change in the characteristic speed, in terms of §w(®), the change in the characteristic
variable. By linearizing the Euler equations at V, (2.9) implies

( ~[p/(20)) 6u + [1/(2%)] 6p)
§W =L,V = 6p—[1/%) 6p
[0/ (2¢)] 6u + [1/(2¢*)] 6p

(5.52)

(See also expression (5.45).)
Next, we assume that the two states differ from each other only by the first char-

acteristic; that is,
bw® =6p—[1/* ép=0, (5.53a)

and

sw® = [p/(2¢)] 6u + [1/(2¢%)]) 6p = 0. (5.53b)

All § quantities are expressed in terms of ép below. Equations (5.53a,b) are equivalent

to

6p = c*6p, du = —(c/p)bp. (5.54a,b)

As a consequence of (5.52) and (5.54),
sw) = 6p. (5.55)

Now, we calculate éc. By definition (2.4) for the speed of sound,

2c6c = 2P
p

Using (5.54a) and again (2.4), the above implies

(v ~1)cbp.

bc =
c %

(5.56)

The speed corresponding to the first characteristic of V is A() = u —¢; that of V46V
is AW 4+ A1) = y 4 §u — (c + 6¢). Consequently, by (5.54b) and (5.56),

A = §u — Se = _(r+1)cbp
2p '
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And by (5.55),
v (55 (v + Desw®

2p
A similar argument for the third characteristic with the assumption that sw) =0
and éw® = 0 yields

Sx(1) — (5.57)

(v + 1)cbw®
2p '
For the second characteristic, 6w(!) = 0 and éw® = 0 imply that éu = ép = 0. As

a result, 6A(® = §u = 0. For this reason, the second component needs no modification.

AP = (5.58)

We are now ready for the admissibility correction. With the initial condition Vp
and Vg, let the tilde state be defined by (5.43), (5.24), and (5.28). Let AW = L,AV,
and for the purpose of derivation, let Gy be defined by (5.36).

We carry out the argument for the first and third characteristics below. Again, the
superscript (7) is omitted unless the corresponding expressions for the two characteris-

tics are different. Equation (5.36) implies
gu = %(QL +gr) — %IXIAw- (5.59)
For the purpose of estimating A;, and Ag, we assume that & = (wr + wr)/2; therefore,

Aw.

%] [

WR—W=wW—wp =

Next, we employ either estimate (5.57) or (5.58): with V playing the role of the fixed
state V; VL and Vg, that of V 4+ §V; in the case of the first characteristic, set

(v + 1)éAw®

A=A = — % , (5.60a)
or if it is the third one that we are dealing with, set
AN =AN® = ﬁ-ﬁ—l)—CA—“’(—?’) (5.60b)
2p
Then
Ao=XA—1AX,  Ap=A+1iAX (5.61a, b)

Note that if AX < 0, then Az > A > Ag, the characteristic speeds converge, and we
have a shock. On the other hand, if AX > 0, then A < X< AR, the characteristic
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speeds diverge, and we have a fan. Furthermore, for the first characteristic, AA and
Aw have opposite sign by (5.60a); for the third, the same sign by (5.60b).

Denote the speed 0 by Ao and the corresponding characteristic variable and flux by
wo and go, respectively. (Thus go = grr.) Suppose now we are in the situation of a fan
that spreads past z = 0; i.e., A\ <0 < Ag. In addition, suppose X > 0. It follows from
(5.33) that expression (5.59) yields gz. Since the correct choice for gy is go, we should
add the quantity go — gz to the right hand side of (5.59).

To keep the formulas simple, we estimate go — gz, in terms of Aw and the various
speeds below. The following estimates are independent of the assumption of a fan
described above. As assumed in (5.60a—61), the speed X is a linear function of w;

therefore,
Wy — Wi, _ )\O—AL _ _‘)\L

Aw AN T AN

Moreover, w;, corresponds to the speed Ar, and wp to 0; consequently, the average

speed between wp and wy, can be approximated by Ar/2:

go—gr AL

Wo — W, 2
As a result of the above two expressions,

AZ

—qgr ~ ——L_
9o — 9L 2A/\Aw. (5.62a)
A similar a,rgument‘yields
AR
go—9grR = —2AAAw' (5.62b)

Now, we turn to the situation of a fan that spreads past z = 0. There are two

subcases: for A > 0, set

AL
n= KX; (5.63a)
for X < 0, set
n= &. (5.63b)
A\ '

The corrected upwind flux is given by adding go — g1, to the right hand side of (5.59)
in the former case, and by adding go — gr in the latter. As a result, by (5.62-63),

gu = } (92 + 9r) — (1Al + ) Aw. (5.64)
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Next, we derive a formula for  that works for all cases. Instead of Ay and Ap,
consider the quantity
1A =LA
In the case of a shock, i.e., AX < 0, the above expression is positive. For a fan that
does not spread past z = 0, it is also positive. For a fan that spreads past z = 0, it
is negative; it equals Ay if X > 0; but —Ag if X < 0. Only when the fan spreads past

z = 0, does the flux need a correction. Thus, with
An = {]A] - 382}, (5.65)

where z~ is the negative part of z defined in (5.12), set
Ak
SR S— 5.
7= AN+ 10755 (5:66)
then the corrected flux is given by (5.64).
Let H be the diagonal matrix whose diagonal entries are 71, 0, and 7®. By

multiplying the matrix expression corresponding to (5.64) on the left by R., one obtains
Fy = 1 (Fz +Fr) — 1R (JA| + H) AW. (5.67)

Before summarizing the algorithm, note that the quantities y—1, 1/(y—1), 7/(v—1),
and (y — 1)/v are often used and should be stored.

Algorithm for flux-difference splitting with admissibility correction. At a
‘nonsmooth’ interface, i.e., kjy1/2 < 2 where kjy12 is defined by (5.4), with Vi and
VR given by (5.1), calculate: ey and er via (2.2b); Hp, and Hg, (2.17); p, (5.43); Bt
and Br, (5.23); @, (5.24); H, (5.28); &, &, (2.17); AV, (5.3). With L, by (2.6¢), obtain
AW =L,AV. Next,fori =1 and i = 3, calculate 2D via (2.5); AXD), (5.60a); AX®),
(5.608); A, (5.65); 79, (5.66). Finally, with R, by (2.16), F, and Fg, (2.2¢), the
upwind flux is given by (5.67).

Observe that expression (5.66) can be replaced by a simpler one via an additional
approximation as shown below. Rewriting (5.66) as 7 = [An|(|An]/|AA]), then by
(5.65), the quantity in the parenthesis is bounded between 0 and 1/2. We can replace
this quantity by its upper bound 1/2:

n = 3|An|. (5.68a)
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The above expression always yields a more diffusive flux than (5.66). Instead of the

factor 1/2, we can use 1/4, which is the average of 0 and 1/2,
7= 3An|. (5.68b)

For the test problems below, the results by these two expressions are essentially iden-

tical to those by (5.66); nevertheless, only (5.66) is employed here.

5.7. Simple-wave upwind flux. We can now derive an economical approximation
to Osher’s approximate Riemann solver (Engquist and Osher 1981, Osher and Solomon
1982). First, in our context, instead of (5.59), this flux is expressed as

1 1 fwr
=5 (o +9) =5 [ M du. (5.69)
Note the key difference between Osher’s method and the above expression: for Osher’s
flux, the integral follows a certain path in the space of state variables, and determining
this path is quite involved; here, the path is already determined by the linearization -
and diagonalization. Observe that symbolically,

49 _ /Am— /“mm— -

dw — Y - g! wy - gR gL‘

As a consequence, if A\ > 0 and Ag > 0, then since X is assumed to be linear in w,
A(w) > 0 for all w between wr, and wg, and expression (5.69) recovers gr; similarly, if
Ar <0 and Ag <0, it recovers gr. For a fan that spreads past z = 0, it yields

1 1 fwo 1 rw
(g +g [ Adw—2 [T Adw =g (5.70)

gu =3 2 Ju, v

For these three cases, the result by (5.69) is the same as that by the flux-difference
splitting with admissibility condition in the previous subsection.

However, if we have a shock with left and right speeds spreading past z =0, i.e.,
AL >0 and Ar <0, (5.71)
then (5.69) yields

gu =3 (gL + gr) f Adw =g + gr — go- (5.72)

t\.’)l’—‘

3,
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Next, in addition to (5.71), we assume that A > 0. Since (5.59) yields gz, we must add
to its right hand side the quantity gr — go to obtain (5.69). But this quantity is given
by (5.62b), and since AX <0,

AR
—go ~ ———Aw. .
Thus, with
_ Ak (5.74a)
T= AN ‘
the upwind flux resulting from (5.69) is given by (5.64). The case X < 0 is similar
except
_ M (5.74b)
TEIAN ‘

An expression that works for all cases can be derived by assuming that we always
have a fan in (5.65): AX/2 is replaced by its absolute value,

v = {|A - FAN}. (5.75)

Clearly, for a fan, the above expression reduces to (5.65) since AX > 0. For a shock
that does not spread past z = 0, it yields 0. For a shock spreading past ¢ = 0, there
are two subcases: if A > 0, it yields Ag; if X <0, it yields —Az.

Thus, with Ay defined by (5.75) instead of (5.65), the algorithm for the flux-
difference splitting with admissibility correction in the previous subsection yields an
approximation to Osher’s approximate Riemann solver. This method is named the
simple-wave upwind flux.

Observe that the argument (5.72-74) can also be carried out by switching the limits
of integration in (5.72) so that the variable A corresponding to a shock is transformed
into that of a fan.

Note that the flux-difference splitting turns a fan into a shock, whereas the algo-
fithm in this subsection does the exact opposite by turning a shock into a fan. Also
notice that to save computing time, one can replace the tilde state by the average state

(5.5).

6. Flow with area variation. The formulation presented in the previous sections

extends easily to the case of flows with source terms. As an example, consider the
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unsteady one-dimensional flow in a duct of variable cross-sectional area A(z), which is
described by
(AU); + (AF), = B, (6.1a)

where U and F are defined in (2.1), and the source term is
B = (0,pdA/dz,0)T. (6.15)

This problem has been studied by several authors; see for example Roe (1986) and the
references given there. In the same paper, Roe presented a modified Riemann solver
that takes into account the area variation. Using Hancock’s half-step formulation pre-
sented in section 3, the area variation is accounted for simply in the partial differential

equations for the primitive variables derived from (6.1). First, (6.1) implies

A

U, +F, + 7;50 =0, (6.2a)
where
C =F —(0,p,0)T = (pu, pu?, (e + p)u)7. (6.2b)

Next, with V and A, defined by (2.3), the above leads to

Az
V:+A, V. + 7K =0, (6.3a)
where
K = (pu,0,vpu)". . (6.3b)

The first component of (6.3a) follows easily from that of (6.2a); a similar statement
holds for the second component, which employs the first; and the derivation of the
third component employs both the first and the second.

For each jth cell, the calculation of S;, which approximates (V.);, is the same
as that of section 4; however, the quantity T;, which approximates (V:); and was

estimated by (3.5), is now obtained by using (6.3):

T; = —(A;); S, — (%)j K;. (6-4)

This is where the source term plays its role. The rest of the calculations are the same

as those for the Euler equations (2.1): the solution at time ¢"+'/2 is given by (3.6),
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and the flux at each interface is obtained by one of the methods in §5 without any
modification because time is frozen at t"*1/2, and the source term contributes nothing
here. Finally, using the midpoint rule in a manner similar to the derivation of (3.3b),

expression (6.1) implies

n T n n n
AUTH = 407 + (AP - A Fri + 200, (65a)
where
n n T
Z] +1/2 = (0, pj+1/2[Aj+1/2 - Aj—1/2]7 0) 3 (65b)
p?“/z =p;+ %T(pt)]‘, (6.5¢)

and (p;); is given by the third componeﬁt of (6.4). The above expression completes

the algorithm for the interior points. Note that in the steady state case, one can set

n+1/2
p; / =Dp;-

Our boundary conditions are the standard ones. At the inflow boundary, if the flow
is supersonic, we specify all three variables p, u, and p; if it is subsonic, we specify two
and extrapolate the third from the interior. For the outflow boundary, if the flow is
supersonic, we extrapolate all three variables; if it is subsonic, we extrapolate two and
specify one, say, pressure. For simplicity, and since the flow fields in our numerical
examples are essentially constant near the boundary, we employ a piecewise constant
reconstruction for the boundary cells. For the cell right next to the boundary ones,
the slope is estimated by the parabolic (three-point) formula. One can also employ

appropriate one-sided interpolations; the results are essentially the same.

7. Numerical experiments. Unless otherwise stated, in all of our numerical ex-
amples, v = 1.4; the slope steepening coefficient & is set equal to 5; at a ‘stnooth’ inter-
face where k;;1/2 = 2, the one-intermediate-state model is used; otherwise (k;41/2 < 2),
the flux-difference splitting with admissibility condition is employed; and finally, the
CFL number is 0.8. Note that at a ‘smooth’ interfa-ce, the computing effort is only
slightly more than that of the central difference scheme with artificial viscosity (5.13b)
[see also Jameson, Schmidt, and Turkel (1981), and Harabetian and Pego (1993)]. Gen-
erally, most of the interfaces are ‘smooth’. Near a discontinuity, 1.e., at a ‘nonsmooth’
interface, the computing effort is slightly more than that of the UNO scheme. Also

note that for convenience, the one-intermediate-state model is said to be employed
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everywhere if at a ‘nonsmooth’ interface (k;4+1/2 < 2), this model with the modification
(5.14) is used.

For shocktube problems, the initial time steps corresponding to a fixed CFL condi-
tion are often too big because the flow has not developed; e.g., for the Riemann problem
used by Sod (1978), with CFL number 0.8, the first three time steps are 0.0068, 0.0040,
and 0.0039, while the final time step is 0.0036. Because the solution is self-similar, all
time steps are equal to 0.0036 in the exact solution. The initial time steps that are too
big can occasionally cause some oscillations, especially for CFL number 0.9 and above.
To avoid this problem, one can make a test run to find the appropriate time step, and
then fix the time step rather than the CFL condition. This modification, however, is
not appropriate in the case of Woodward and Colella’s blast wave problem, where the
time steps vary as time goes by. The following simple modification works well for all
test problems below: let the kth time step corresponding to a fixed CFL condition be
denoted by At; for the first 9 time steps, (1 < k <9), we reset At by

DV CEa o

Generally, to arrive at the same final time, a test case with the above modification
takes three time steps more than one without. For the example mentioned above, the
first three time steps are 0.0013, 0.0020, and 0.0023. Expression (7.1) is employed in
all of the following problems.

The first test, used by Sod (1978), is the Riemann problem (5.2) with the initial
data

‘(pL’ uvaL) = (17 Oa 1): (pﬁvuRva) = (01257 Oa 01) (72)

where the subscript L represents the initial condition for 0 < z < 0.5, and R, for
0.5 < z < 1. Figure 7.1 shows the results with 100 cells, 2 = 0.01, z; = (j —1/2)k. The
final time is ¢ = 0.2 (after 57 time steps). The solid line represents the exact solution;
the dots, the numerical one. Note that we do not need any boundary conditions because
the final time is chosen so that the waves have not arrived at the boundaries. At the
end of the calculation, there are a total of fourteen ‘nonsmooth’ cells: eight around
the contact discontinuity, and six around the shock; the two discontinuities at the two

ends of the expansion fan are in the ‘smooth’ region because the changes in density are
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within the noise level by this time. The internal energy (per unit mass) e/p — u?/2,
which magnifies any error for this problem, is shown in Fig. 7.1(d).

In the next two figures, the results for the density, velocity, and pressure are omitted
since they are practically identical to those of Fig. 7.1. Figure 7.2 shows the internal
energy of the same problem except for: (a) CFL number 0.9 (51 time steps), (b) CFL
number 0.01 (4329 time steps), (c) & = 0 (57 time steps), and (d) £ = 10 (also 57 time
steps). As shown by Fig 7.2(a), in spite of the rather large CFL number, the solution
is highly accurate thanks to the modification of the first ten time steps via expression
(7.1). In Fig. 7.2(b), after a large number of time steps, the contact discontinuity still
remains sharp due to the slope-steepening technique. Figure 7.2(c) shows that for Sod’s
problem, with CFL number 0.8, the final time is not large enough to smear the contact
discontinuity because even without slope steepening (x = 0), the solution is adequate.
Comparing Fig. 7.2(d) to Fig. 7.1(d) we notice that once the contact discontinuity 1s
resolved, increasing « does not yield a significant improvement.

Figure 7.3 shows again the internal energy for the same problem except now we test
the upwind fluxes: (a) central difference with artificial viscosity (5.13b) at ‘smooth’ re-
gions, (b) one-intermediate-state (HLV) model everywhere, (c) primitive-variable split-
ting (5.6) at ‘smooth’ regions, and (d) simple-wave upwind flux (5.75) everywhere. As
shown in Fig. 7.3(a), the result by the central difference (5.13b) is as good as that
via a more sophisticated model. However, for the Lax problem below, the solution by
this model cannot match that via an upwind one. Figure 7.3(b) shows that the mod-
ification (5.14) for the one-intermediate-state model is capable of resolving a contact
discontinuity. Comparing Fig. 7.1(d) to Fig. 7.3(c), we notice that the solution via the
primitive-variable splitting (at ‘smooth’ regions) is essentially identical to that via the
one-intermediate-state model. Similarly, Figs. 7.1(d) and 7.3(d) show that at ‘smooth’
regions, a more sophisticated (simple-wave) model does not improve the result; in addi-
tion, for a moving shock, the simple-wave model produces a result essentially identical
to that via the shock model (flux-difference splitting).

The next test, used by Lax (1954), is the Riemann problem

(pL,ur,pr) = (0.445,0.698, 3.528), (or,ur,pr) = (0.5,0,0.571) (7.3)
with the final time 0.16 (after 97 time steps). This problem is more difficult than that
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of Sod because the density field has to be ‘built-up’. The results are shown in Fig. 7.4.

Figure 7.5 shows the density and velocity fields of the same problem except again
(as in Fig. 7.3) we test the upwind fluxes: (a} ‘central difference’ (5.13b) at ‘smooth’
regions, and here note tﬁe bump at the tail of the expansion fan in the velocity field;
(b) one-intermediate-model everywhere, and for this model, the bump is considerably
smaller; (c) primitive-variable splitting at ‘smooth’ regions; and (d) simple-wave up-
wind flux everywhere.

The above two (and also the following) problems show that at ‘smooth’ interfaces,
the one-intermediate-state model is as accurate as a more sophisticated model. It is
also very economical. The flux-difference splitting with admissibility correction (or the
simple-wave upwind flux) is needed only near a discontinuity.

The third problem is designed to test the admissibility condition. It is the Riemann
problem corresponding to a steady Mach 3 shock, except the left and right states are

reversed:
(oL, ur,pr) = (3.857,0.920, 10.333), (pR,uR,pR) = (1,3.550, 1). (7.4)

The solution for the final time t = 0.09 (after 59 time steps) is shown in Fig. 7.6.

Note that for this problem, the shock for the numerical solution is about two mesh
points behind that of the exact one. To explain this phenomenon, we plot the solutions
in Fig. 7.7 for the density field at time ¢ = 0.003 (after 4 time steps, and the expansion
fan is well captured even here), t = 0.01 (9 time steps), t = 0.03 (23 time steps), and
t = 0.04 (27 time steps). Because the numerical solution resolves the fan first, and
then the contact discontinuity, by the time the shock is formed, it is already two cells
behind.

Also notice that if the flux-difference splitting without any correction is employed,
then theoretically, the solution does not change with time because the fluxes are bal-
anced. Eventually however, the solution is broken up by numerical error, but i1s no
longer time-accurate. Next, a remark concerning the various admissibility conditions is
in order. The correction for the flux-vector splitting in §5.5, that for the flux-difference
splitting in §5.6, and the simple-wave upwind flux in §5.7 all produce essentially iden-
tical results for this test.

The fourth problem, due to Shu and Osher (1989), has several extrema in the
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smooth regions. It is used here to test the accuracy of the schemes. In the interval
-5 < z < 5, a moving Mach 3 shock interacts with sine waves in density as described

by the following initial conditions:

(3.857,2.629,10.333) if z < —4,

(p,u,p) = { (1 +0.2sin52,0,1)  otherwise. (7:3)

The final timeis t = 1.8. Since the exact solution for this problem is unknown, the solid
line is the solution with 1600 cells and & = 0. Figure 7.8 shows the solutions with 400

and 800 cells, respectively (x = 5). Note that the solution for 800 cells has essentially
converged (in the sense of mesh refinement). The solutions compare favorably with
those of the third-order ENO scheme (Shu and Osher 1989).

Our fifth test is the problem of two interacting blast waves (Woodward and Colella
1984). The initial condition for 0 <z <11s

Vy if0.1<z<0.9, (7.6)

VvV, ifz<0.1,
V- {
Ve i#f09<z,

where
pL=pPM =pPpR=1, UL =UM=UR= 0, pr= 103, M = 1072, PR = 10%. (7.7)

The boundaries at z = 0 (corresponding to the index 1/2) and z = 1 (index N +1/2
where N is the total number of cells) are solid walls with the following reflecting
boundary conditions: at time level n (the superscript n is omitted below), we define
auxiliary states Vo, V_1, V_; for the left boundary, and Vyi1, Vg2, Vs for the
right one by

P-ix1 = PIy Uy = —U,  Ppoqr=p, =123, (7.8a)

PN+l = PN-l41>  UN+ = —UN—l41, PN+ = PN-it1, 1=1,2,3. (7.8b)

At the final time ¢ = 0.038, the flow field has three contact discontinuities. The middle
one, which is created by the two shocks interacting with each other, 1s very difficult to
resolve. Even very compressive schemes such as Roe’s ‘Superbee’ smear 1t (Roe and
Pyke 1984).

Notice that due to the small pressure in the middle region, the reconstruction step

may result in negative values for pressure and density. This problem is solved simply
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Figure 7.8. Shu and Osher’s problem.
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by replacing p by max(10~%,p) (similarly for p) each time a new p or p is calculated
(for ‘nonsmooth’ cells and interfaces).

Figure 7.9 shows the solution with 1200 cells, K = 12, after 2411 time steps. In
Figs. 7.9-10, this solution is represented by the continuous line since the exact solution
is unknown. At the end of the calculation, there are nine ‘nonsmooth’ cells around
each of the three contact discontinuities, and seven or eight around each of the two
shocks. Note that again the solution compares favorably with those of higher-order
schemes (Woodward and Colella 1984, Harten, Enquist, Osher, and Chakravarty 1987,
Harten 1989). We also tested several values of « between 10 and 99; the results are
practically identical for this problem.

Concerning computing time, on an Iris Indigo R4000 workstation (16 Mflops, com-
plied with option -02), this case takes 32 seconds. At ‘smooth’ regions, if the central
difference with artificial viscosity (5.13b) is employed, there is roughly a 6 percent
savings; if Roe’s flux-difference splitting (with no admissibility correction) is used, the
cost is about 35 percent more. The three results are practically identical.

Figure 7.10 show the density field of the solution with (a) 600 cells and « = 16; (b)
400 cells and & = 20; (c) 400 cells and « = 7, where the middle contact discontinuity
is slightly smeared, but the other two still remain sharp; and (d) 400 cells and & = 3,
where the three contact discontinuities are smeared.

The last example is (essentially) the quasi one-dimensional nozzle flow problem
employed by Shubin, Stephen, and Glaz (1981): the domain is =2 <z < 10; the area,
A(z) = 1.398 + .34Ttanh (.8z — 4); the supersonic inflow conditions are p = 1, u = 1.30,
p = 1; the subsonic outflow, p = 1.4. The initial conditions are identical to the inflow
conditions everywhere. Figure 7.11 shows the solution with 80 cells after 2000 iterations
when machine accuracy is reached. Note that at the shock, the exact value for entropy
calculated from the exact averages of density, momentum, and energy is plotted with
the cross symbol. As a result, the entropy value at this peint is meaningless. Also
notice that the entropy field for this problem is difficult to resolve accurately; see, e.g.,
Hirsch (1990).

Finally, we remark that for the case of a very slowly moving shock (Roberts 1990,
Lin 1991, Quirk 1993), similar to the solution by the exact Riemann solver, all upwind
fluxes presented here yield oscillatory results. We omit the details. As stated by Roe
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(1989), “The perfect Riemann solver for generating numerical schemes probably does

not yet exist.”

8. Discussion and conclusions. The interpolation and constraints in this paper
can be extended to the piecewise-parabolic, dual-variable (scheme V in Van Leer 1977),
and dual-mesh methods (Nessyahu and Tadmor 1990, Sanders and Weiser 1992). The
author hopes to report on some of the results in forthcoming papers.

In summary, concerning the reconstruction step, a piecewise linear interpolation
that preserves monotonicity and uniform second-order accuracy was introduced. The
concept and coding of the monotonicity constraints were simplified by the use of the
median function. Computational efficiency was enhanced by devising a criterion that
" detects the ‘smooth’ part of the data where the constraint is redundant. A slope-
steepening technique, which can generally resolve a contact discontinuity in four cells,
was presented. As for the upwind step, upwind fluxes were employed in a manner
slightly different from those in the literature. They were rederived from a simple and
unified point of view by approximating the Euler equations in conservation form using
linearization and diagonalization. At smooth regions, the one-intermediate-state model
was employed for economic reasons. (The central difference with artificial viscosity
(5.13b), which is even more economical, can also be used, but for the Riemann problem
of Lax, the result is not as accurate.) Near a discontinuity, either the flux-difference
splitting with admissibility condition or the simple-wave upwind flux was employed for
robustness. The resulting scheme is efficient and accurate.

For slow Iﬁoving shocks, difficulties remain. Extensions to the multi-dimensional
case, which may involve more theoretical work on constraints as well as upwind fluxes,

are to be explored.
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